The d-d Bands of Hexachloroferrate(III) Ion

Hideo Yamatera and Akemi Kato

Department of Chemistry, Nagoya University, Chikusa-ku, Nagoya

(Received June 13, 1968)

Spectra of finely powdered solid samples of hexacoordinated iron(III) chloride complexes were obtained in the visible and near infrared region with a Carl Zeiss PMQII spectrophotometer equipped with the reflectance attachment RA3.

The spectrum of (NH₄)₄[FeCl₆][SbCl₆], which is representative of hexachloroferrate(III) spectra, is shown in Fig. 1. The bands associated with [FeCl₆]³⁻ can easily be distinguished from those due to NH₄+ vibrations by comparing the spectrum with that of (NH₄)₂SnCl₆, which is essentially isomorphous with (NH₄)₄[FeCl₆][SbCl₆]. band at 12800 cm⁻¹ corresponds to the first

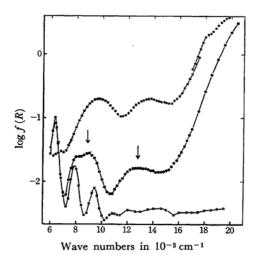


Fig. 1. Spectra* of (NH₄)₄[FeCl₆][SbCl₆] (---), $Cs_3Fe_2Cl_9$ (- \bigcirc -) and $(NH_4)_2[SnCl_6]$ (- \square -).

(lowest in wave number) band so far observed,1-3) and the band at 8900 cm⁻¹ has not been reported.

The bands at 8900 cm⁻¹ and 12800 cm⁻¹ are assigned to the ${}^6A_{1g} \rightarrow {}^4T_{1g}(G)$ and ${}^6A_{1g} \rightarrow {}^4T_{2g}(G)$ transitions, respectively. With this assignment, a narrow band due to the ⁶A_{1g} \rightarrow ⁴A_{1g}, ⁴E_g(G) transitions is expected to appear near 18000 cm⁻¹. Closer examination of the spectrum in this region disclosed a slight but discernible rise at about 18000 cm⁻¹ on the slope of the intense charge Moreover, the spectrum transfer band. Cs₃Fe₂Cl₉, which also contains FeCl₆ chromophores, clearly showed a shoulder at 17900 cm⁻¹, in addition to the two bands at 9800 cm-1 and 13600 cm⁻¹.

This assignment unfortunately disagrees with the assignment given by Hatfield et al.,2) but it gives more reasonable values for the ligand field and interelectronic repulsion parameters: $\Delta =$ 11100 cm^{-1} and $B = 605 \text{ cm}^{-1}$ (with the assumption C=4B). $J\phi$ rgensen's estimation⁴⁾ of his spectrochemical and nephelauxetic functions, f=0.80 and h=2.0 for Cl⁻ and g=1.4kK and $k_{35}=$ 0.24 for Fe(III), leads to a prediction of $\Delta =$ 11200 cm^{-1} and $B=572 \text{ cm}^{-1}$, if B for the free Fe³⁺ is assumed to be 1100 cm⁻¹ by interpolation. Our result compares well with this prediction.

Full results and detailed discussions will be given elsewhere.

^{*} f(R) [= $(1-R)^2/2R$, where R represents the reflecting power] is nearly proportional to the absorption coefficient for finely powdered weakly absorbing substances. [See, for example, G. Kortüm and H. Schöttler, Z. Electrochem., 57, 253 (1953).]

¹⁾ H. L. Schläfer, Z. Physik. Chem. Neue Folge, 3, 222 (1955).

²⁾ W. E. Hatfield, R. C. Fay, C. E. Pfluger and T. S. Piper, J. Am. Chem. Soc., 85, 265 (1963).
3) A. P. Ginsberg and M. B. Robin, Inorg. Chem.,

<sup>2, 817 (1963).

4)</sup> C. K. Jørgensen, Discussions Faraday Soc., 26, 110 (1958); "Structure and Bonding," Vol. 1, ed. by C. K. Jørgensen, J. B. Neilands, R. S. Nyholm, D. Reinen and R. J. P. Williams, Springer-Verlag, Berlin (1966), p. 3.